goP.I.P. Webdesign auf Usedom

На главную


ПОВЫШЕНИЕ ПРОЧНОСТИ МЕЖПОРОВЫХ СТЕНОК ПОРИЗОВАННЫХ БЕТОНОВ И БЕТОНОВ НА ЛЕГКИХ ЗАПОЛНИТЕЛЯХ КАК СПОСОБ УВЕЛИЧЕНИЯ ПРОЧНОСТИ МАТЕРИАЛА ПРИ СОКРАЩЕНИИ РАСХОДА ЦЕМЕНТА



ЭФФЕКТИВНЫЙ БЕТОН

Вопросы энерго- и ресурсосбережения в современном капитальном строительстве приобретают все более важное значение в условиях роста цен на энергоносители.

Выполнение требований новых теплотехнических норм в соответствии с изменениями 3 СНиП II- 3- 79* "Строительная теплотехника" не возможно без массового применения теплоэффективных строительных материалов и конструкций. Основным способом увеличения теплосопротивления ограждающих конструкций является применение пористых материалов низкой теплопроводности и плотности.

Имеется богатый опыт применения в строительстве многослойных ограждающих конструкций, где роль теплоэффективного материала играет минеральная вата, либо листовой пенополистирол.

Немного юмора:
Жена: - Почему ты каждый день ходишь в трактир? Муж: - Там очень хороший скрипач. - А что, в филармонии плохие скрипачи? - Нет, но там не подают пиво.

При кажущейся привлекательности многослойных конструкций на основе минеральной ваты и пенополистирола им присущи и серьезные недостатки, значительно снижающие область применения таких конструкций. Большая трудоемкость возведения многослойных ограждающих конструкций, малая воздухопроницаемость, теплотехническая неоднородность и, наконец, возможность конденсации влаги между разнородными слоями такой стены - серьезный недостаток многослойных композиций. Теплотехническая однородность однослойных ограждений в 1.3-1.5 раз больше, чем в многослойных.

Кроме того, проблема долговечности различных типов утеплителей в многослойных ограждающих конструкциях недостаточно изучена.

Поэтому современное капитальное строительство развивается именно по пути возведения не многослойных, а однослойных ограждающих конструкций.

Из современных строительных материалов, имеющих высокие показатели теплосопротивления, малый объемный вес и, поэтому являющихся оптимальным материалом для возведения теплоэффективных однослойных ограждающих конструкций, можно отметить ячеистые бетоны (газобетон, пенобетон) и бетоны на легких заполнителях (полистиролбетон, вермикулитобетон). Для этих материалов характерно, что при средней плотности 600кг/м3 коэффициент теплопроводности в среднем составляет 0.14 - 0.145 Вт/ (м*Со), что позволяет создавать ограждающие конструкции, обеспечивающие требуемое теплосопротивление при умеренной толщине наружных стен.

Из перечисленных материалов наиболее интересными представляются: пенобетон неавтоклавного твердения и полистиролбетон малой плотности. При отличных показателях теплосопротивления, характерного для этих материалов, производство их относительно не сложно, и может быть организованно непосредственно на строительной площадке, что значительно расширяет область применения пенобетона и полистиролбетона в современном строительстве.

Пенобетон неавтоклавного твердения, как и полистиролбетон наиболее рационально использовать в ограждающих конструкциях зданий повышенного уровня теплозащиты, при устройстве перекрытий малоэтажных зданий, теплоизоляции чердачных перекрытий и полов, звукоизоляции перекрытий, стен и перегородок. Причем, полистиролбетон и пенобетон может использоваться в строительстве как в виде готовых стеновых блоков, камней, перегородок и плит заводского производства, так и в виде подвижного раствора, приготовленного непосредственно на строительной площадке.

Однако опыт массового производства и применения пенобетона и полистиролбетона низких плотностей выявил ряд серьезных недостатков, присущих этим материалам. Причем эти недостатки (малая прочность материалов на сжатие, большой расход высокомарочного цемента, расслоение материала и большой процент боя при перевозке) многократно увеличиваются из-за низкой культуры производства, отсутствия внятных рекомендаций и легко воспроизводимых в условиях строительных площадок технологических регламентов производства пенобетона неавтоклавного твердения и полистиролбетона малой плотности. При производстве стеновых блоков из полистиролбетона и пенобетона неавтоклавного твердения на специализированных предприятиях производители, помимо вышеперечисленных проблем, возникающих при изготовлении этих материалов, вынуждены решать еще одну: повышенное время выдержки изделий в формах. Длительное время выдержки материала в формах значительно снижает оборачиваемость технологической оснастки на производстве. Неоправданное снижение времени выдержки материала в формах, приводит к увеличению процента брака изделий при распалубке. Причем, при производстве пенобетона для сокращения сроков набора распалубочной прочности вполне возможно применение тепловлажностной обработки, то в производстве полистиролбетона тепловлажностная обработка изделий полностью исключается.

Итак, основными недостатками теплоэффективных строительных материалов на основе пенобетона неавтоклавного твердения и полистиролбетона низких плотностей следует признать:

* Низкая прочность на сжатие

Немного юмора:
Первая брачная ночь. Молодожены удалились в спальню. И заснули, только храп слышен. Вся родня всю ночь толпится у дверей - и зайти нельзя, и помочь как-то бы... Под утро слышат из-за дверей шепот: "ножку выше, выше ножку... " OK! - думают - все нормально, молодые разобрались, что надо делать. Утро. - Ну, как спалось, деточки? - Отлично, мамаша! Только пока спали, какие-то придурки рояль через окно вытащили.

* Нестабильность получаемого материала

* Отсутствие внятных рекомендаций и практически отработанных, легковоспроизводимых технологий и рецептур получения материала

* Повышенное время выдержки материала в формах, большой процент брака при распалубке или резке

Однако, принимая во внимание, что прочность как пенобетона (поризованного бетона), так и бетона на легких заполнителях (полистиролбетона) прежде всего, зависит от прочности межпоровых стенок.

Пенобетон и полистирол

В пенобетоне это стенки, разделяющие сформированные пузырьки или поры, а в полистиролбетоне это стенки, разделяющие вспененные гранулы ПСВ. Повышение прочности межпоровых стенок - действенный способ увеличения прочности строительных материалов на основе пенобетона и полистиролбетона. Для повышения прочности межпоровых стенок теплоэффективных строительных материалов наиболее целесообразно снижение водотвердого отношения при увеличении активности, как вяжущих материалов (цемента), так и инертных (песка, шлака, золы) составляющих смеси. Применение этих неоднократно проверенных на практике методов повышения прочности бетонов и растворов позволяет получать строительные материалы на основе пенобетона и полистиролбетона повышенной прочности при умеренном расходе цемента.

Таким образом, получение качественных теплоэффективных строительных материалов возможно лишь при использовании исходных материалов, отвечающих определенным требованиям, точности дозировок и проведения комплекса мероприятий по увеличению активности (активации) применяемых компонентов.

Остановимся подробней на исходных материалах, применяемых для производства, как пенобетона, так и полистиролбетона, тем более, что до определенного момента требования к компонентам смеси для производства этих материалов будут аналогичными.

Инертные составляющие смеси

Свежий анекдот:
Штиpлиц шел по Цветочной улице. Вдpуг из втоpого этажа дома напpотив вывалился Плейшнеp. Штиpлиц ускоpил шаг. Hо со втоpого этажа следующего дома вывалился Плейшнеp. Штиpлиц еще поддал. Из окна тpетьего дома опять вывалился Плейшнеp... Штиpлиц бежал по Цветочной улице, а Плейшнеpы все вываливались...

При производстве теплоэффективных материалов объемной массой менее 800 кг/м3 с использованием песка ГОСТ 8736-93 необходимо применять песок либо тонкий (Мк 0.87), либо очень тонкий (Мк 0.57), что связано, прежде всего, с большим объемом вовлеченного в раствор воздуха (в пенобетоне), либо большого количества вспененных гранул ПСВ (в полистиролбетоне). Принимая во внимание неизменность свободного объема между сферическими телами одинакового диаметра (гранулами ПСВ, либо сферическими пустотами в пенобетоне), необходимо стремиться к максимально плотной укладке сферических тел в материале. Иными словами, для получения материала максимально низкой плотности необходимо сокращать толщину межпоровых стенок, приближая сферические тела, как можно ближе друг к другу. Песок (либо зола, или шлак) повышенного модуля крупности в межпоровой перегородке играет роль не компонента материала перегородки, а является включением, окруженным цементным зерном. Такие включения увеличивают толщину межпоровой перегородки, что соответственно увеличивает и объемный вес материала, так как такие крупные включения не являются элементами силового каркаса, межпоровых перегородок, они не увеличивают прочность цементно-песчаной конструкции, а напротив ослабляют ее.

теплоэффективный материал

Таким образом, для получения материала низкой плотности, обладающего хорошими показателями прочности на сжатие, необходимо применение инертных компонентов с высокими показателями удельной поверхности материала. Перед применением инертных компонентов требуемого гранулометрического состава желательно провести работы по их активации. Активация инертных компонентов смеси в случае, если их гранулометрический состав соответствует заданной плотности пенобетона либо полистиролбетона заключается в удалении с поверхности частиц неактивных поверхностных пленок. В случае, если гранулометрический состав инертных составляющих смеси не удовлетворяет вышеизложенным требованиям, песок (шлак, зола) необходимо измельчить. Измельчение песка повышает его удельную поверхность, активность песка резко возрастает. Для тонкого помола песка возможно применение измельчителей- дезинтеграторов сыпучих материалов, либо шаровых и молотковых мельниц.

яжущие составляющие смеси

В повышении прочности межпоровых перегородок теплоэффективных строительных материалов основную роль играет активность цемента, либо активность другого применяемого вяжущего компонента смеси. Активность цемента зависит от множества факторов. Сроки изготовления цемента, условия хранения цемента оказывают заметное влияние на его активность. Однако основным фактором, влияющим на активность цемента, являются показатели его удельной поверхности. Чем выше показатели удельной поверхности, тем выше активность цемента. Способ активации цемента методом дополнительного помола основан именно на этом принципе.

Увеличение удельной поверхности цемента всего на 2.8 % (с 283м2 /кг до 291м2 /кг) увеличивает его активность на 5 %.

Увеличение активности цемента на 5% позволяет получать строительные растворы и бетоны, прочность которых в первые сутки нормального твердения увеличивается на 45% от прочности контрольных образцов.

Таким образом, относительно небольшое увеличение активности цемента дает ощутимый прирост прочности готового материала.

В производстве пенобетона либо полистиролбетона рекомендуется применять именно легкое доизмельчение цемента, как наиболее экономически выгодное. Для активации цемента на 3-5% возможно применение доступных агрегатов-измельчителей-дезинтеграторов, для которых характерны низкая энергонагруженность, высокая производительность и, что немаловажно, небольшая себестоимость активации цемента.

Посмеемся:
Ноябрьский дождь. Общевойсковые учения. В окопе трое продрогших укутались в шинели. На них едет танк. Один высовывается на шум. Видит это дело и обращается к товарищам. - Вася, кинь гранату... - Облом! Он к другому: - Петя, кинь гранату... - О-о-о-й! Такой облом!... Танк приближается вплотную. Останавливается. Глохнет двигатель. Из люка на башне высовывается рожа в шлемофоне: - Ребята! Киньте гранату! А то такой облом!

Активация цемента на 5% в измельчителе-дезинтеграторе происходит за один прогон, при повторном прогоне активность цемента возрастает.

Особая ценность методики активации цемента в производстве теплоэффективных материалов - это возможность применения лежалого цемента и цемента невысокого качества без ухудшения технических характеристик выпускаемого материала. Применение активированных компонентов смеси в производстве пенобетона и полистиролбетона позволяет получать материал стабильно высокого качества.

Наиболее впечатляющие результаты увеличения прочности межпоровых стенок в пенобетоне и полистиролбетоне низких плотностей (менее 700 кг/м3 ) достигаются при организации совместного помола цемента и песка. При этом измельчитель-дезинтегратор играет роль не только агрегата измельчителя, но и выполняет функцию смесителя сыпучих материалов. Применение метода совместного помола сухих составляющих пенобетона и полистиролбетона позволяет получить совершенно однородную цементно-песчаную смесь на основе активированного цемента и песка заданного гранулометрического состава. Как результат, увеличение прочности материала, как в первые сутки твердения, так и на 28 сутки, сокращение времени выдержки материала в формах, снижение расхода цемента и возможность применения цемента невысокого качества.

Турбосмесители - активаторы в производстве теплоэффективных строительных материалов

Итак, получена активированная цементно-песчаная смесь заданных характеристик, пригодная для производства активированного пенобетона или полистиролбетона. Следующим шагом на пути получения качественных теплоэффективных строительных материалов будет выбор смесительного оборудования.

Дело в том, что производство стеновых блоков, панелей и плит на основе пенобетона возможно лишь с применением литьевой технологии формовки. Подвижные растворы загружаются в формы, имеющие разделительные перегородки для формования стеновых блоков, либо не имеющих таких перегородок при формовании массива для последующей резки на резательных машинах. После набора материалом распалубочной прочности, формы разбираются, а отформованный материал укладывается на технологические поддоны.

При изготовлении стеновых блоков и панелей из полистиролбетона возможно формование материала, как литьевым способом, так и методом объемного вибропрессования жестких формовочных смесей.

Каждый из этих способов формования имеет свои положительные и отрицательные стороны, однако в рамках этой статьи мы остановимся на литьевой технологии получения стеновых блоков из пенобетона и полистиролбетопа низких плотностей.

Для приготовления подвижных растворов с одновременной дополнительной активацией компонентов идеально подходят турбулентные бетоносмесители, имеющие скоростные активаторы и бортовые лопатки определенной конфигурации. Большинство применяемых в производстве пенобетона одностадийных смесителей - это смесители турбулентного типа. Положительные стороны смесительного оборудования турбулентного типа это:

* Отличное качество смешивания при высокой производительности

* Низкая энергонагруженность смесительного оборудования

* Активация компонентов раствора при смешивании

При производстве пенобетона смеситель турбулентного типа выполняет функцию агрегата поризации бетона. Иными словами, помимо непосредственного смешивания компонентов раствора, скоростной активатор турбулентного смесителя активирует пенообразователь, что приводит к образованию большого объема пустот (пор, пузырьков) в приготавливаемом растворе.

Однако, наряду с положительными качествами турбулентных смесителей, существуют и некоторые недостатки, присущие смесителям этого типа. Из них основными являются:

1. Низкая надежность уплотнительных устройств, обеспечивающих герметичное уплотнение места входа скоростного вала в емкость смесителя. Соответственно низкая надежность самого смесителя.

2. Возможность работы лишь с бетонами и растворами, имеющими достаточно высокую подвижность (осадка по стандартному конусу не менее 10- 15 см).

Тем не менее, не смотря на ряд серьезных недостатков, в производстве пенобетона и полистиролбетона (литьевого формования) использование турбулентных смесителей не только полностью оправдано, но и является наиболее целесообразным.

Остановимся более подробно на конструктивных изменениях существенно расширяющих область применения смесителей турбулентного типа.

Проблема повышения надежности уплотнительных устройств смесителей турбулентного типа полностью решена с применением "Устройства пневмодинамической защиты опорного узла: НАВИГАТОР - Тула". Разработанное устройство "НАВИГАТОР- Тула" позволило многократно увеличить ресурс оборудования, повышая его производительность.

Применение устройства "НАВИГАТОР- Тула" в смесителях турбулентного типа позволило изменить форму активатора, оснастив его лопастями минимального гидродинамического сопротивления, что позволило существенно увеличить практическую производительность смесительного оборудования.

Применение активатора-турбины и устройства "НАВИГАТОР - Тула" позволило создать универсальный турбосмеситель - активатор, одинаково уверенно приготавливающий строительные растворы, пенобетон различных плотностей, полистиролбетон, с одновременной активацией компонентов смеси.

Новый тип смесительного оборудования: Универсальный турбосмеситель- активатор, объединяя все самое лучшее от турбулентных смесителей классической конструкции и последние достижения в области скоростного смешивания различных материалов, позволяет реализовать на практике идею создания универсального смешивающего агрегата.

Турбосмесители оснащаются высокочастотными вибраторами, установленными в нижней конусной части емкости. Применение высокочастотных вибраторов позволило увеличить подвижность приготавливаемого раствора без добавления воды, что особенно ценно при производстве материалов заданной подвижности.

Применение высокочастотных вибраторов, создающих возле стенок емкости смесителя локальные области, где приготавливаемый материал находится в псевдожидком состоянии (при контакте со стенками емкости имеет большую подвижность, чем основной материал в емкости смесителя).

Таким образом, применение турбосмесителей - активаторов, оснащенных высокочастотными вибраторами, позволило приготавливать пенобетон пониженной технологической влажности и полистиролбетон различной плотности.

Виброактивация и гидроактивация

Применение турбосмесителей, оснащенных высокочастотными бортовыми вибраторами, в производстве пенобетона, полистиролбетона, строительных растворов открывает еще одну возможность повышения прочности материалов при сокращении расхода цемента.

Объединение технологии помола твердых составляющих смеси с методом последующей гидроактивации позволяет добиться впечатляющих результатов, как в вопросах повышения прочности материала, так и в сокращении расхода цемента на производстве.

Особенно актуально использование технологии комплексной активации в производстве пенобетона, когда гидроактивация компонентов раствора происходит одновременно с поризацией рабочего раствора.

Сам принцип гидроактивации растворов основан на снижении флокуляционных взаимодействий частиц.

Как известно при контакте воды с цементом между частицами появляются силы поверхностного взаимодействия, что приводит к образованию цементных флокул. В данном случае, флокулы это объединение частиц цемента вследствие молекулярного сцепления и абсорбции. Чем больше удельная поверхность цемента (цемент более мелкий), тем интенсивней протекают процессы флокулообразования. Иными словами, чем качественней цемент, тем большее количество флокул образуется. При неправильно подобранных режимах активации или смешивания происходит парадоксальное явление: до определенного момента помол цемента и соответственно увеличение удельной поверхности повышает прочность материала, однако дополнительное измельчение цемента зачастую приводит к снижению прочности. Причины этого - высокая начальная скорость схватывания цемента и агрегатирование измельченного цементного зерна.

Цементные флокулы препятствуют равномерному распределению воды в системе, сокращая количество цементного зерна, участвующего в процессе гидратации. Таким образом, от 30 до 70% цемента не получают возможности прогидратировать в полном объеме и практически не оказывают влияние на прочность материала.

Высокочастотные виброимпульсы, генерируемые бортовыми вибраторами, способствуют интенсивному разрушению флокулационных новообразований. Цементное зерно имеет возможность прогидратировать в максимально полном объеме. Таким образом, прочность материала существенно возрастает (особенно в первые сутки нормального твердения), а расход цемента снижается. Добавим к этому, что скоростной турбоактиватор смесителя, равномерно распределяя компоненты раствора, способствует удалению поверхностных неактивных пленок с цементного зерна и песка. Гидроактивация раствора, проведенная на турбосмесителе - активаторе не только повышает активность компонентов раствора, но и позволяет восстанавливать изначальную активность лежалых цементов.

Обработка растворов на турбосмесителе - активаторе позволяет повысить прочность строительного раствора на сжатие на 25-30%. Причем себестоимость гидроактивации предельно мала. Так для повышения прочности (на сжатие) строительного раствора на 10 % потребуется около 1.1кВт электроэнергии.

Производство эффективного пенобетона пониженной технологической влажности

Технология производства пенобетона пониженной технологической влажности на турбосмесителе - активаторе несколько отличается от классических схем приготовления пенобетона на одностадийных смесителях турбулентного типа. Основное отличие - это снижение водотвердого (В/Т) отношения и оптимизация процесса порообразования (поризации).

Снижение В/Т отношения на ряду с активацией компонентов смеси - действенный способ увеличения прочности материала при снижении расхода цемента.

При подборе состава водо-цементно-песчаного раствора следует стремиться к снижению водотвердого (В/Т) отношения. Увеличение количества свободной воды в системе неизменно приводит к образованию большого количества капиллярных пор. Капиллярные поры значительно снижают прочность цементного камня, водопроницаемость цементного камня увеличивается, как следствие, значительно снижаются показатели долговечности материала.

Известно, что количество воды в бетоне, связанной с цементом, не превышает 25-28%, но для улучшения удобноукладываемости бетона значения В/Ц принимаются 0.45-0.5. Способность раствора к поризации также напрямую зависит от количества свободной воды в растворе. Поэтому для производства пенобетона обычно используют В/Ц не менее 0.4.

На практике получены следующие результаты: при увеличении В/Ц с 0.5 до 0.6 прочность цементного камня снижается в среднем на 15-20%, а при уменьшении значения В/Ц с 0.6 до 0.45 прочность цементного камня возрастает на 15-18%.

Пенобетон пониженной технологической влажности характеризуется высокой стабильностью, ускоренным набором распалубочной прочности и, наконец, повышенной прочностью. Причем эти результаты получены не в результате повышенного расхода высокомарочного цемента, а при снижении!

Время поризации рабочего раствора на турбосмесителе - активаторе не превышает 2-4 минут, при этом, благодаря устройству кольцевого подвода воздуха и конфигурации турбины-активатора, расход синтетического пенообразователя не превышает 600 грамм на 1м3 (при производстве пенобетона D-600 и В/Т отношении больше 0.5) и 1200 грамм на 1м3 (при производстве пенобетона D-600 и В/Т меньше 0.4).

Качество пенобетона, получаемого на турбосмесителях-активаторах, ни в чем не уступает, а по некоторым характеристикам превосходит пенобетон, полученный на установках, оснащенных пеногенератором либо механическим поризатором.

Еще раз хотелось бы заметить, что пенобетон пониженной технологической влажности, приготовленный на основе активированных компонентов, материал очень стабильный и не сложный в производстве. Изготовление пенобетона пониженной технологической влажности, учитывая высокую стабильность материала, вполне возможно организовать на строительной площадке в непосредственной близости от места его использования.

Итак, эффективный пенобетон - это активация компонентов смеси и снижение количества свободной воды в растворе.

Производство полистиролбетона на турбосмесителе - активаторе

Основные способы повышения прочности пенобетона сохраняют свою актуальность и при производстве полистиролбетона. Несмотря на различные способы формирования пустот, эти материалы во многом схожи. Во многом схожи и способы их производства.

Большой объем сферических тел (воздушных пузырьков или вспененных гранул ПСВ), распределенных в песко-цементной массе, устанавливает и аналогичные способы повышения прочности таких конструкций.

Таким образом, технология помола сыпучих компонентов смеси и последующая гидро- и виброактивация раствора в производстве строительных растворов и пенобетона различных плотностей вполне актуальна и для производства полистиролбетона.

Повышение прочности стенок между гранулами вспененного ПСВ увеличивает прочность всей конструкции. Активация компонентов смеси и снижение водотвердого (В/Т) отношения позволяет изготавливать полистиролбетон повышенной прочности при снижении расхода цемента.

Применение турбосмесителей - активаторов в производстве полистиролбетона помимо гидроактивации рабочего раствора позволяет реализовать на практике еще один способ увеличения прочности материала без увеличения расхода цемента.

Так как гранулы вспененного ПСВ имеют гладкую поверхность, существует проблема прочности крепления гранул ПСВ в цементно-песчаной матрице. Зачастую, вспененные гранулы ПСВ легко отделяются от поверхности полистиролбетонного стенового блока. Для борьбы с выкрашиванием гранул ПСВ применяются различные химические составы, увеличивающие сцепление гранул с цементно-песчаным основанием.

Однако значительно лучшие результаты прочности крепления гранул ПСВ достигаются при использовании специальных гранул, имеющих матовую неровную поверхность. К такой неровной поверхности цемент и песок прикрепляется гораздо сильнее. Гранулы ПСВ, имеющие такую поверхность, практически не выкрашиваются из полистиролбетонной массы. К сожалению, отечественная промышленность не выпускает таких гранул ПСВ, изначально предназначенных для использования в полистиролбетонных конструкциях. Однако при производстве полистиролбетона на турбосмесителях - активаторах, гранулы вспененного ПСВ, перемешиваемые вместе с цементом и песком, получают множественные микроповреждения в виде мелких царапин. Гладкая поверхность гранул ПСВ постепенно становится матовой. К микроцарапинам на поверхности гранул ПСВ надежно прикрепляются частицы цемента и песка. Таким образом, даже без использования химических добавок, призванных увеличить сцепление гранул ПСВ с цементно-песчаными составляющими раствора, достигаются отличные результаты упрочнения полистиролбетонной конструкции.

Применение турбосмесителей - активаторов в производстве полистиролбетона позволяет производить качественное смешивание материалов, гидро- и виброактивировать раствор и подготавливать вспененные гранулы ПСВ.

На основании результатов производственных испытаний и лабораторных исследований можно с уверенностью сказать: применение турбосмесителей - активаторов открывает новые возможности производства различных теплоэффективных строительных материалов.

Широчайшие возможности использования турбосмесителей - активаторов в производстве строительных материалов позволило реализовать на практике идею создания универсальных смесителей- активаторов!

Материал предоставлен: ИТП "Техприбор" - оборудование для пенобетона и полистиролбетона

Терморегулятор

В настоящее время в систему отопления перед радиатором необходимо установить (как минимум) вентиль, с помощью которого можно было бы регулировать поток теплоносителя, поступающего в радиатор. Это вопрос не только комфорта, но и защиты, так как в случае необходимости можно просто отключить радиатор от стояка, что кстати, невозможно во многих старых системах отопления да и в некоторых новостройках. Так что запорно-регулирующую арматуру устанавливать, бесспорно, надо. Вопрос в том, ограничиться ли шаровым краном, поставить ли конусный вентиль или установить автоматический терморегулятор. Насколько удобна та или иная регулировка?

Прежде всего, надо сказать о том, что регулировать поток воды в радиаторе с помощью одного только шарового крана не стоит, так как он предназначен лишь для двух положений: «открыто» и «закрыто», Ставя кран в промежуточное положение, Вы рискуете потерять герметичность Вашей системы, так как инородные частички, содержащиеся в воде со временем оставляют зазубрины на краях перекрывающего шара.

Надежней регулировать температуру с помощью ручного конусного вентиля. Если за окном весна и солнышко днем пригревает достаточно хорошо, думаю, каждый из нас днем с удовольствием прикроет вентиль на радиаторе, установленном в достаточно солнечной комнате. Но прикрыть вентиль - это только полдела. Вторые полдела - это не забыть его потом открыть, причем вернуть его стоит именно в то положение, в котором он стоял. Поэтому систему отопления стоит модернизировать до такой степени, чтобы она требовала минимум внимания для своего обслуживания. А еще лучше, чтобы она регулировалась самостоятельно, то есть автоматически. Вот тут-то и выручают автоматические терморегуляторы. Радиаторные терморегуляторы или, как их еще называют, термостаты,от датской компании «Данфосс» простые и надежные приборы для автоматического поддержания комфортной температуры воздуха в помещении. Они устанавливаются в системе отопления здания перед отопительным прибором на трубе, подающей в него теплоноситель.

"Данфосс" разработал конструкции радиаторных терморегуляторов для любых систем отопления в том числе специально для российских однотрубных систем. Терморегуляторы могут быть установлены в одно- или двухтрубных системах отопления строящихся или существующих зданий различной этажности и назначения.

Термостаты фирмы "Данфосс" отлично вписываются в любой интерьер, имеют приятный эргономичный дизайн и удобную настройку. Они легко устанавливаются как в новых, так и в существующих системах отопления. Они приспособлены для эксплуатации в российских условиях, долговечны и не требуют профилактического обслуживания. После установки радиаторных терморегуляторов отпадает необходимость открывать окна для регулирования температуры в помещениях. Терморегуляторы будут постоянно поддерживать температуру в диапазоне от 6°С до 26°С на желаемом уровне.

Радиаторные терморегуляторы гарантируют необходимое распределение воды по всей системе отопления. При этом даже самые удаленные радиаторы будут обеспечивать требуемую подачу тепла в помещении.

Сокращая подачу "излишнего" тепла от отопительного прибора в периоды теплопоступлений от солнечных лучей, людей, электробытовых устройств термостат исключает перегрев помещения, обеспечивая в нем комфортную температуру воздуха. Кроме этого, если Вы живете в коттедже с индивидуальным котлом, термостаты позволяют сэкономить до 20% тепловой энергии, потребляемой на отопление зданий, обеспечивая снижение расхода сжигаемого топлива и, тем самым, охрану окружающей среды. Благодаря этому вложенные средства окупаются многократно: увеличивается экономия тепловой энергии, улучшается микроклимат в помещениях, а также упрощается монтаж и практически отсутствуют затраты на эксплуатацию.

Выигрыш от применения терморегуляторов довольно быстро ощутит хозяин коттеджа, отапливаемого соляркой. Чуть на улице потеплело - расход топлива моментально уменьшился. В результате, если за сутки на отопление тратилось, например, 50 литров солярки, то за счет применения термостатов это объем может сократиться до 40 литров. Вроде бы эффект небольшой, но это значит, что следующую цистерну с соляркой можно будет купить чуть позднее, чем обычно. А за год эффект может стать весьма ощутимым. С коттеджами вообще ситуация особая. Тут надо вести разговор не о том, надо применять терморегуляторы или не надо (решение в этом случае очевидно), а о том с какой скоростью окупятся затраты по закупке и установке терморегуляторов. Если коттедж отапливается дизельным топливом, то приобретение терморегуляторов окупается практически за один сезон.

Единственным доводом в пользу применения термостатов в городских условиях пока остается комфорт. Первое, где просят установить термостат - это спальня. Но спальне-то термостат необходим в последнюю очередь. А в первую очередь он необходим в тех местах, где есть динамика изменения температуры в течение дня. Например, в кухне, где от плиты есть добавочное тепло. В комнате на солнечной стороне, где днем температура повышается за счет "естественного" отопления. В комнате, где часто собирается много народа (например, в гостиной, если это частная квартира, или в комнате для производственных совещаний, если это офис. А в спальне термостат необходим, так скажем, в последнюю очередь, поскольку ни источников тепла, ни большого скопления людей там не бывает. Конечно, в спальне можно обойтись и обычным ручным вентилем и с его помощью отрегулировать температуру до желаемой. Но термостат, все-таки, справится с регулировкой температуры гораздо лучше, а главное точнее.

В коттеджах термостаты в первую очередь ставятся на верхних этажах, потому что теплый воздух поднимается снизу вверх по лестничным пролетам. Именно поэтому на нижних этажах бывает холодно, а на верхних при этом нечем дышать. Остальные критерии такие же, как в квартире - комнаты на солнечной стороне, кухни и т.п.

Для использования в системах отопления коттеджей как раз очень подходят импортные панельные радиаторы, обладающие небольшой емкостью и быстро реагирующие на закрытие и открытие клапанов термостатов.

Как правило, покупателей прежде всего волнует вопрос наличия сертификатов на предлагаемый товар, чтобы быть уверенным в его качестве. Термостаты - товар сертифицированный. Термостаты фирмы "Данфосс" имеют сертификаты CEN и ISO. CEN - Европейский комитет по стандартизации, разрабатывающий нормативную базу по средствам регулирования и проводящий испытания регуляторов прямого действия, а также стандартизирующий их технические характеристики. Терморегуляторы RTD фирмы "Данфосс" соответствуют требованиям данных норм, опробированы и допущены к применению. ISO - Международная организация по стандартизации. Данфосс - фирма, получившая сертификат качества ISO 9000. Сертификаты ISO 9001, ISO 9002 и ISO 9003 подтверждают высокое качество продукции на стадии разработки, освоения и серийного производства.

Современный рынок предлагает потребителям два типа терморегуляторов: жидкостные и газонаполненные. Фирма "Данфосс" является единственной фирмой, которая производит газонаполненные терморегуляторы. Срок службы таких терморегуляторов достаточно продолжительный и составляет более 20 лет.

Радиаторные терморегуляторы RTD являются газонаполненными устройствами. Это уникальное техническое решение имеет два больших преимущества: газ всегда будет конденсироваться в более холодной части датчика, которая обычно удалена от корпуса регулирующего клапана. Поэтому радиаторный терморегулятор будет всегда реагировать на изменение температуры в помещении и на него не будет влиять температура воды. Терморегулятор очень быстро реагирует на изменение температуры воздуха и, поэтому, эффективно использует теплопоступление в помещение. Радиаторные газонаполненные терморегуляторы RTD фирмы "Данфосс" имеют устойчивые заданные значения регулируемой величины и прекрасные характеристики регулирования.

Конструкция термостата.

Радиаторный термостат состоит из двух частей: термостатического элемента и клапана.

Термостатический элемент - это устройство, имеющее цилиндр с гофрированными стенками (сильфон), заполненный рабочим веществом, которое реагирует на изменение температуры воздуха в помещении. При повышении температуры вещество увеличивается в объеме, растягивая сильфон, который в свою очередь перемещает шток клапана в сторону уменьшения количества протекающего через отопительный прибор теплоносителя. При понижении температуры воздуха вещество и сильфон сжимаются, увеличивая проток теплоносителя через прибор отопления. Сильфоны "Данфосс" рассчитаны на 1 миллион циклов "сжатие-растяжение", что соответствует примерно 100 годам эксплуатации.

Клапаны бывают двух типов: RTD-N и RTD-G

Так же они бывают в прямом и угловом исполнении. Тип клапана выбирается в зависимости от вида системы отопления, а его размер - по диаметру отверстия в пробке отопительного прибора или по диаметру подводящей воду трубы.

Клапаны термостатов типа RTD-G следует применять: в однотрубных системах отопления любых зданий; в двухтрубных системах старых многоэтажных зданий; в двухтрубных системах отопления коттеджей без циркуляционных насосов.

Клапаны термостатов типа RTD-N следует применять: в двухтрубных системах отопления новых зданий; в двухтрубных системах отопления коттеджей при наличии циркуляционных насосов.

Клапан устанавливается, как правило, в отверстие пробки отопительного прибора со стороны подачи в него горячей воды. Рекомендуется клапан располагать так, чтобы затем термостатический элемент оказался в горизонтальном положении, при котором исключается влияние на термоэлемент тепла, исходящего от клапана и трубы.

Однотрубные системы с радиаторными термостатами должны иметь перемычку (байпас) между горизонтальными трубами (подводками), подводящими воду к отопительному прибору. При установке клапана направление потока воды в трубе должно совпадать с направлением стрелки на корпусе клапана. В случае оснащения термостатами отопительных приборов существующих систем отопления, следует уточнять направление потока воды по вертикальной трубе.

Сильфонная система термостатического элемента, как мы уже сказали, заполнена газом, что обеспечивает надлежащее пропорциональное регулирование температуры воздуха в помещении. Датчик реагирует на температуру окружающей среды. Этой температуре соответствует вполне определённое давление газа в сильфоне, которое уравновешивается усилием регулировочной пружины. При повышении температуры окружающего воздуха давление газа в сильфоне увеличивается, и конус клапана перемещается в сторону закрытия. Так продолжается до тех пор, пока между давлением газа в сильфоне и усилием пружины не будет обеспечено равновесие. При понижении температуры воздуха в помещении давление газа снижается, что позволяет сильфону сжаться, и конус клапана перемещается в сторону открытия до установления равновесия системы.

Считается, что газонаполненные сильфоны имеют большую скорость реакции чувствительного элемента на изменение температуры в помещении. Жидкостные лучше и точнее передают изменение давления внутри сильфона (как следствие изменения температуры) на исполнительный механизм.Как правильно выбрать тип термостатического элемента?

Термостатический элемент со встроенным датчиком.

Встроенный датчик должен всегда размещаться в таком месте помещения, где обеспечена вокруг него свободная циркуляция воздуха. Для предотвращения нагрева теплом от трубопровода датчик следует устанавливать, по возможности, горизонтально.

Термостатический элемент с дистанционным датчиком.

Если встроенный датчик не может правильно реагировать на температуру воздуха в помещении, то следует применить термостатический элемент с дистанционным датчиком. Это может быть в следующих случаях:

если терморегулятор установлен в нише;

когда слишком широкий подоконник (более 220 мм), а расстояние от него до радиатора менее 100 мм;

когда глубина радиатора более 160 мм;

если ось термостатического элемента должна быть в вертикальном положении;

если радиаторный терморегулятор закрыт шторами.

В сомнительных случаях всегда применяйте дистанционный датчик.

Давайте поясним какой эффект оказывает штора?

Закрыв радиатор с термостатом тяжелым экраном или тяжелой шторой, мы тем самым изолируем термостат от основного объема помещения. В результате датчик термостата меряет температуру не помещения, как это должно быть, а температуру в ограниченном объеме за шторой. Температура в комнате при этом оказывается абсолютно другой. Именно поэтому лучше использовать термостат с выносным датчиком.

Как должен устанавливаться датчик: параллельно или перпендикулярно плоскости радиатора?

Многие стараются установить датчик не перпендикулярно, а параллельно плоскости радиатора. В этом положении он просто не так бросается в глаза. Но решение это не совсем правильное. Поднимающиеся от радиатора потоки теплого воздуха будут при этом влиять на показания, снимаемые сильфоном термостата, и возникнет погрешность показаний прибора. Погрешность эта не очень велика, но поправку на неё придется вычислять и устанавливать на задатчике температуры самому владельцу. Поэтому более правильно устанавливать его именно перпендикулярно плоскости радиатора.

Как производится монтаж, настройка и регулировка температуры?

Монтаж. Конструкция корпуса клапана терморегулятора позволяет монтировать его во входном отверстии радиатора с соблюдением однонаправленности потока теплоносителя и стрелки на клапане. Радиаторные терморегуляторы могут применяться в любой из известных систем отопления. Для установки термостатического элемента на корпусе клапана применяется обычный гаечный ключ. Инструкции по установке вложены в упаковку радиаторного терморегулятора.

В ходе строительства, когда датчик ещё не установлен, система отопления может регулироваться вручную с помощью защитного колпачка, навинченного на корпус клапана.

Настройка. Вы можете настроить термостат на температуру воздуха от 6°С до 26°С (например, в гостиной - 22°С, в спальне - 20°С, в кухне - 18°С) и он будет автоматически поддерживать заданную температуру, изменяя количество проходящей через отопительный прибор горячей воды и, соответственно, его теплоотдачу без использования электрической или другой внешней энергии. Настройка термостата производится поворотом рукоятки до совмещения индексов на ней со стрелкой или меткой. Индексы на шкале соответствуют следующим значениям температур: I(1)-14°С, II(2)- 17°С, III(3)-20°C, IV(4)-26°C. После осуществления первичной настройки, температуру можно корректировать в соответствии с Вашими ощущениями.

Регулировка температуры. Требуемая температура в помещении устанавливается путём поворота шкалы настройки. Шкала настройки показывает соотношение между отметками на ней и температурой в помещении. Указанные индексы предназначены только для ориентировочного руководства, так как на реальную температуру влияют условия размещения радиаторного терморегулятора.

Р-зона (Хр) говорит о том, насколько должна повыситься температура в помещении, чтобы конус клапана терморегулятора переместился от открытого положения до закрытого. Шкала температур нанесена на терморегуляторе в соответствии с европейскими стандартами при Хр = 2°С. Это означает, что радиаторные терморегуляторы закрываются при температуре в помещении, превышающей на 2°С установленное на шкале значение температуры. Например, RTD3100, настроенный на "III", будет поддерживать в помещении температуру от 18 до 20°С в зависимости от фактической потребности в тепле, если он откалиброван при Хр = 2°С. Чем меньше предварительная настройка пропускной способности клапана, тем обычно меньше будет Р-зона.

Блокировка и ограничение настройки радиаторного терморегулятора. Если потребуется, можно ограничить верхний и нижний предел диапазона настройки радиаторного терморегулятора. Более подробная информация по данному вопросу дана в прилагаемой к изделию инструкции.

Клапаны терморегуляторов, встраиваемые в отопительный прибор. Это клапаны терморегуляторов, которые устанавливаются на заводе-изготовителе отопительных приборов внутрь специально разработанной конструкции компакт-радиатора.

Встраиваемые в радиатор клапаны фирмы "Данфосс" могут быть совместимы со всеми типами и размерами компакт-радиаторов и применяться как в двухтрубных, так и в однотрубных системах водяного отопления зданий различного назначения.

Запорный клапан типа RLV и спускной кран. Посредством запорного клапана RLV можно осуществлять отключение отдельного радиатора с целью его демонтажа или технического обслуживания без спуска воды из трубопроводов всей системы отопления. Имеются прямые и угловые модификации клапана RLV.

Отключение с помощью запорного клапана RLV-K. Клапаны RLV-K предназначены для отключения отдельного компакт-радиатора с целью его демонтажа или технического обслуживания без опорожнения всей системы отопления. Опорожнение и заполнение отключённого компакт-радиатора производится с помощью специального спускного крана (код №003L0152). С завода-изготовителя запорный клапан RLV-K поступает готовым для применения в двухтрубной системе отопления. Для использования в однотрубной системе отопления в клапане следует открыть перемычку с помощью штифтового шестигранного ключа.

Одноквартирные жилые здания. Однотрубные и двухтрубные системы отопления.

Модернизация двухтрубных систем отопления в существующих одноквартирных зданиях осуществляется очень просто. В этих системах достаточно ручные регулирующие клапаны заменить на автоматические типа RTD-N, установив на них термостатические элементы RTD, которые будут поддерживать в помещениях постоянные температуры воздуха. В одноквартирных зданиях с однотрубными системами отопления при их реконструкции используются клапаны типа RTD-G. В этом случае необходимо проверить, имеет ли система замыкающие участки (байпасы) у радиаторов или нет.

Встраиваемый в систему автоматического регулирования клапан дает возможность полностью перекрыть поступление теплоносителя в радиатор вручную, если возникает такая необходимость, или все-таки необходим дополнительный вентиль?

Сам по себе автоматический терморегулятор такой возможности не дает. Он дает возможность только прикрыть поток до минимума (что соответствует значению 6°С - температура противозамерзания). Если снять головку термостата, то сам клапан такую возможность даст. Именно для этого в комплекте с термостатом дается технологический пластмассовый колпачок, который служит в качестве "барашка". Но колпачок пластмассовый и потому слабенький. Более мощным и долговечным является латунный колпачок, продаваемый, как правило, отдельно. Запирание при помощи клапана терморегулятора происходит достаточно надежно и никаких дополнительных вентилей в системе практически не требуется.

Но есть в этом вопросе еще один фактор, который нельзя не учитывать. Чтобы перекрыть поток теплоносителя с помощью клапана, необходимо сначала снять головку термостата. Необходимо твердо помнить в каком месте спрятан этот самый "запирающий" латунный колпачок. Да и завернуть клапан надо достаточно надежно, чтобы давление в системе не открыло его само по себе. Именно поэтому некоторые предпочитают установить дополнительный запорный вентиль.

Выбор радиаторов и автоматики, управляющей радиаторами и вообще системой отопления, дело, безусловно, непростое. И не только выбор, а и сам монтаж, а так же гарантийная и послегарантийная эксплуатация. И это непростое дело надо поручать, прежде всего, профессионалам, которые бы правильно посоветовали какие надо в том или ином случае выбрать радиаторы, какие термостаты и т.д.

Источник: www.timeradiator.ru www.timeradiator.ru Дата публикации: 14.01.2002

На главную
Hosted by uCoz